

A PROJECT

 (Based on BCA - 601)

ON

 DATA MINING

Submitted

By

VICKY KUMAR

PRASHANT KUMAR TIWARI

(Bachelor of Computer Application)

6th SEMESTER

Under the Guidance of

PROFESSOR PRABHAT KUMAR

 TEAM MEMBERS:-

VICKY KUMAR

UNIVERSITY ROLL NO.:-214151

REG.NO.:-20CCVGCS035/20

PRASHANT KUMAR TIWARI

UNIVERSITY ROLL NO.:-214150

REG.NO.:-20CCVGCS034/20

Introduction
 A well documented problem faced by maintainers when understanding

a so ware system is the lack of familiarity with it, combined with the

lack of accurate documentation [11]. Several techniques and methods

have been proposed in order to facilitate this

me consuming ac vity[3], [7], [9].

The work presented in this paper is part of a wider research effort inves

ga ng the applicability and suitability of using data mining to facilitate

program comprehension and maintenance [4], [13], [15],[15]. This

effort aims at developing a methodology for semi automated program

comprehension incorpora ng data mining. A fundamental underlying

assump on is that the maintainer may have li le or no knowledge of the

program which is analysed. The work presented here aims to help

maintainers to recognise parts of C++ code that have common

characteris cs, facilita ng program understanding. This work focuses on

extrac ng data from C++ code which are clustered in order to iden fy

logical, behavioural and structural correla ons amongst program

components. C++ was selected as it is widely used but is more

complicated to comprehend, compared to other programming

languages, like COBOL. As an object oriented language, it can be

analyzed in either a more detailed, technical level (member data and

member func ons analysis), or in a more abstract level (class analysis).

The objec ves of this work are:

i) to define the input model needed to extract data from C++ code

and populate a database. This requires defining program en es and

their a ributes. ii) to propose a pre-processing method that extracts

data from code using the input data model.

iii) to assess the feasibility of the methodology in producing valid,

useful and novel pa erns and knowledge about a so ware

system. The remaining of this paper is organised as follows.

Sec on 2 reviews previous solu ons in the domain of data

mining for program comprehension. Sec on 3 outlines the

proposed methodology for pre-processing C++ source code,

the input data model and the steps of this methodology. Sec on

4 assesses the accuracy of the output of this method, analyses

its results and outlines deduc ons from its applica on. Finally,

conclusions and direc ons for future work are presented in sec

on 5.

 Background

So ware maintenance is the most difficult stage in so ware lifecycle, o

en performed with limited understanding of the design and the overall

structure of a system because of commercial pressures [11]. Fast,

unplanned modifica ons, based on par al understanding of a system,

give rise to increased code complexity and deteriorated modularity, thus

resul ng in 50%-90% of the maintainers’ me to be spent on program

comprehension [14]. Furthermore it is recognised that there are no

explicit guidelines given a program understanding task, nor there are

good criteria to decide how to represent knowledge derived by and used

for it [2].

Data mining and its ability to deal with vast amounts of data, has been

considered a suitable solu on in assis ng so ware maintenance o en resul

ng in remarkable results [1], [6], [8], [10], [12], [17], [17]. Our approach

similarly uses data mining to get insights into systems design and

structure [4], [13], [15], [15].

The following paragraphs briefly review some of the most prominent

solu ons in the area of data mining for so ware maintenance and

compare these to our approach.

 Using Clustering to Produce High-Level System

Organisa ons of Code

This solu on proposes a collec on of algorithms which facilitate the

automa c recovery of the modular structure of a so ware system from

its source code [8]. It creates a hierarchical view of the organisa on of

the system based mainly on the components and the rela onships that

exist in the source code.

First it represents the system modules and the module-level rela onships

as a module - dependency graph. Then it par ons this graph so that the

high - level subsystem structure can be derived from the component

level rela onships extracted from the source code. Based on the concepts

of cohesion and coherence three parameters are introduced: intra-

connec vity, inter connec vity and modularisa on quality

The basic goal of this modularisa on technique is to automa cally par

on the components of a system into clusters (subsystems) so that the

resultant organisa on concurrently minimises interconnec vity while

maximising intra-connec vity. The underlying assump on is that a well-

designed system is organised into cohesive clusters that are loosely

interconnected. The main drawback of this solu on is that as the number

of files exceeds 20, calcula on me is greatly increased.

 A So ware Evalua on Model Using

Component Associa on Views

This solu on proposes a model for the evalua on of the architectural

design of a system based on the associa on between the components of

the system [12]. It allows measurement of system modularity, as an

indica on of the design quality and its decomposi on into subsystems.

For this reason the following three associa on views of a system are

generated:

i) Control passing: It represents the correla on among the system

components based on func on invoca on.

ii) Data exchange: It epitomises the correla on among the system

components based on aggregate data types (except integer, real,

boolean and string) that are either passed as parameters between two

func ons or are referenced by a func on.

iv) Data sharing: It signifies the correla on among the system

components based on sharing the global variables by the func

ons. In this approach the so ware system is modelled as an a

ributed rela onal graph with system en es as nodes and data-

control-dependencies as edges. At this point, the applica on of

data mining techniques, like associa on rules helps the

decomposi on of the graph into domains of en es based on the

associa on property. The next step is to populate a database of

these domains. This approach is based on the concept of the

associa on between the components of a system. There are

however other characteris cs that play crucial role in grouping

system components, such as the number of member data or

func ons in a class. These can be discovered by using other data

mining techniques like clustering.

 A Method for Legacy Systems Maintenance

by Mining Data Extracted from Code

This approach used data mining to facilitate so ware maintenance and

reliability assessment. It addressed C/C++ and COBOL legacy systems

aiming at understanding low/medium level concepts and rela onships

involving components at the func on, paragraph or even line of code

level [4], [13], [16].

This approach consists of three dis nct phases: a)

data extrac on,

b) data mining applica on

c) result evalua on.

 There were different challenges in each phase. These involved

the defini on of an appropriate data model which captures as much

informa on about the code as possible, the construc on of a

database suitable for data mining, the selec on and customisa on

and applica on of data mining algorithms and the assessment of

the outcomes by domain experts. The approach deals with both

COBOL and C/C++ programs and varies according to the

differences between these languages. For C programs, we used

func ons as en es, and a ributes defined according to the use and

types of parameters and variables, and the types of returned

values. We

then applied clustering to iden fy sub-sets of source code that are

grouped together according to custom-made similarity metrics.

For COBOL programs we used paragraphs as en es, and binary a

ributes depending on the presence of user-defined and language-

defined iden fiers. In this case we derived associa on rules in order

to establish inter-group and intragroup rela onships

Results represent the syntac c and seman c content of the source code.

Code is represented by means of models or graphs, like variable rela

onship model, a variable-block rela onship model or even models that

convey a meaning similar to Data Flow Diagrams and flow charts.

Programs are abstracted into groups containing interrelated en es and

are grouped together. This solu on addresses systems both at medium

and at low level and confirms that data mining can produce structural

views of source code thus facilita ng legacy systems understanding.

There were however issues that had to do with correla ons across system

components such as programs and files. This deficiency was dealt with

by the methodology proposed in this paper.

. Descrip on of the Proposed Framework

The framework proposed here, was developed for pre-processing C++

source code at the program level and consists of the following parts:

i) The input model, which involves the specifica on of program en

es and their a ributes.

ii) ii) The pre-processing method.

 This sec on outlines the main characteris cs of the pre-processing and

cluster analysis system.

Each en ty is described by a ributes thus formula ng database tables

Pre-Processing Methodology
The pre-processing method extracts data from source code and stores

these into appropriate tables. There were two major requirements for

this:

i) Output should be stored in way facilita ng clustering ii) ii) Data

processing should be fast. We use a top-down approach by

processing top-level program data first, such as class informa on, and

then lower-level data such as member func ons, their parameters, and

member data.

Pre-processing methodology

More specifically, we first extract informa on that describes the class

en ty, such as class handle, its super class name if it exists, and the

number of the member data and func ons. Then informa on that

describes the member data of a class is extracted, including variable

name, type and category, such as public, protected, private, as well

informa on describing whether the

variable is sta c, a pointer or user-defined. A er that, we extract

informa on related to class member func ons, such as name, return

type and category (public, protected, private), as well as number of

parameters if any. Finally informa on related to the parameters of class

member func ons is extracted including name, type and use (by value,

by reference). An outline of this methodology is illustrated

Aspects of the Proposed Framework
Sec ons §3.1-.2 presented two fundamental concepts about the proposed

framework: the input model and the pre-processing methodology. This

sec on describes aspects of the framework regarding outcome u lisa on.

More specifically all the informa on required by the methodology, as

defined by the input data model, can be found at the header files of

standard C++ systems. We scan these files and populate relevant

database tables. We then use IBM’s Intelligent Miner™ demographic

clustering on these tables to iden fy pa erns concerning the system

structure and its components’ general characteris cs. These characteris

cs can be qualita ve like the name of the superclass that a class inherits

from, the category (public protected, private) of a member func on and

so on. They can also be quan ta ve, such as the number of member func

on parameters. We have experimented using various clustering schemes

in order to iden fy correlated en es such as classes, func ons and member

data, based on similari es on their a ributes as defined by the input

model. Results are briefly presented and discussed in sec on 4.

collec on is made of source code rather than more “conven onal”

An overview of the system

The first step of this process (Extrac on) involves parsing the code

to extract data modeling program en es and their a ributes. The second

step (Transforma on) transforms the extracted data in order to store

these in rela onal database tables suitable for clustering. The third step

(Data Mining) applies clustering in search for pa erns of interest. Pa

erns are then interpreted and analyzed. The process is an itera ve one

and interim results or findings can be feedback to a previous stage.

.Result Evalua on
The proposed framework was evaluated in terms of accuracy and ability

to capture knowledge relevant to so ware maintenance ac vi es, using

three open source applica ons.

Two of the applica ons, CAccessReports and CompDB, are created with

the help of Microso Founda on Classes (MFC) and can be downloaded

from [19]. The other applica on, FlightGear Flight Simulator, is an open

source flight simulator that can be downloaded from [19].

The actual structure of these applica ons is Front-End Part Database

C++ Source Code Data mining Tool Analysis Results Back-End Part

Preprocessing Applica on System OLEDB Transformed Data Pa erns

Knowledge Extrac on Trans forma on Data Minin g

Analysis Interpreta on Evalua on C++ Source Code Data compared to

the outcome of the analysis of their respec ve input models.

The output should be valid, novel and useful to the system maintainer.

The following sub-sec ons discuss separately the outcomes of our

empirical experimenta on with these applica ons.

The First Case Study
CAccessReport is a small-medium size applica on with 53 public

classes, and 2812 func ons that have 1614 parameters in total. 4.1.1

Class Analysis. The classes of this applica on have many similari es as

almost all of them (52 out of 53) inherit from one class:

COleDispatchDriver and have only public member func ons. Therefore,

only a ributes describing the number of public func ons and the class

handle were of importance in formula ng clusters. As a result clusters

are characterised only by the number of their member func ons

Member Func ons Analysis. There are two significant characteris cs of

the member func ons of this program: the first is that all of them are

public and the second is that almost half of them contain parameters.

They were grouped in three clusters. The first cluster, represen ng

45.82% of the popula on, consists of public func ons with parameters.

These func ons either have no return type or they return void. Therefore,

it can be concluded that this cluster includes the constructors of the

system’s classes and func ons that usually set values to these. The

second cluster, represen ng 34.12% of the popula on, consists of public

func ons that have no parameters. Half of these func ons return the type

CString, which encapsulates a character string. The third cluster,

represen ng 20.06% of the popula on, consists of public func ons,

11.17% of which have no parameters at all, while the remaining 88.83%

have. Almost half of these func ons return the following types

VARIANT, which is a selfdescribed data type that facilitates data

passing, and LPDISPATCH, which accesses the underlying pointer of

the COleDispatchDriver object

 Member Func ons Parameters Analysis. Most of the member func on

parameters are passed by value. They were grouped in three clusters:

The first cluster (42.44% of the popula on) consists of parameters that

are passed by value and originate from the following types: LPCSTR,

which is a constant pointer to a string, LPDISPATCH and pointers of

type VARIANT. The second cluster (41.57%) also consists of

parameters that are passed by value, most of which originate from the

types bool, short and long. The third cluster (15.99%)

Class Analysis.

 En es extracted from this program formed three clusters. The first

cluster represents 38.89% of the popula on, and consists of classes that

all inherit from another class. Their respec ve superclasses are: i) CSta

c, which encapsulates the sta c control. ii) CView, which a view class is

derived from. iii) CMDIFrameWnd, which provides a main frame

window for Mul ple Document Interface (MDI) applica ons. iv)

CMDIChildWnd, which provides child windows for an MDI applica

on.

Classes in this cluster are related logically, as they represent

components of the document/view architecture implemented by this

program. The second cluster, represents 33.33% of the popula on, and

consists of classes, amongst which, two do not inherit and four do. The

respec ve superclasses of those who inherit are: i) CStringArray, which

is an array of the String type. ii) CListBox, which encapsulates the list

box control. iii) CDocument, which is the class where the document of

an MFC applica on (like CompDB) derives from. iv) CListCtrl, which

displays a graphical list items. The classes in this cluster do not have a

strong logical correla on. There is only one class represen ng a

component included in the document/view architecture, two others

represent control classes, and another represents a shape of the MFC

collec on.

 Member Data Analysis.

 The member data of this program’s classes are either public or

protected. Three clusters were formed. The first cluster represents

59.38% of the popula on and consists of protected members, none of

which is a pointer. Almost half of the member data of this class (Fig.

4.1) belong to two classes. The types of the member data vary. The more

predominant are: i) int ii) CString, which encapsulates a character

string. iii) CFont, which wraps the Windows font object and API func

ons for crea ng and managing fonts. iv) CGridCtrl, which is a control

: Member data classes of CompDB, 1 st cluster

The second cluster represents 32.81% of the popula on and consists of

public members none of which is a pointer. Member data of this cluster

mostly belong to three classes. There is a clear logical connec on among

member data of this cluster as the majority of it belongs to classes that

are derived from the CDialog class. Types of the member data vary. The

more predominant are: i) enum ii) CString, which encapsulates a

character string. iii) CBu on, which wraps a standard Windows pushbu

on.

The third cluster represents 7.81% of the popula on and consists of

public and protected members which are all pointers. This is the most

important logical rela on between the member data of this cluster, which

only belongs to two classes (Fig. 4.2). The types of the member data are

different. The more predominant are: i) CPen, which wraps the

Windows pen object and includes API func ons for crea ng pens as

member func ons. ii) CBrush, which wraps the Windows brush object

and API func ons for crea ng brushes.

Member Func ons Analysis. Class member func ons were

grouped in three clusters.

: Member data classes of CompDB, 3 rd cluster

The first cluster represents 34.38% of the popula on and consists of

public and protected func ons. The return types of these vary, the most

predominant being afx_msg void and afx_msg int. Most of the member

func ons of this cluster belong to four classes. The second cluster

represents 33.20% of the popula on.

The return types of these vary, the most predominant being void and

bool. Most of the member func ons of this cluster belong to four classes,

two of which are the same as in the first cluster. The third cluster

represents 32.42% of the popula on. Almost half of the func ons of this

cluster do not have a return type. This indicates that they are either the

constructors or the destructors of the classes they belong to. Among

member func ons that have a return type, the most predominant one is

bool. Most of the member func ons of this cluster belong to four classes,

three of which are the same as in the second cluster and only one similar

to these in the first cluster

Member Func ons Parameters Analysis. Member func on parameters of

classes were grouped into three clusters:

The first cluster represents 42.98% of the popula on and consists of

parameters passed by value. The return types of these vary, the most

predominant being pointers of type char, int and pointers of type CDC,

which is a class that encapsulates device-context support. The second

cluster represents 42.55% of the popula on and consists of parameters

passed by value. The return types of these vary, the most predominant

being char, UINT, which is an unsigned 32-bit integer and COLOREF,

which is a 32-bit integer that holds a colour. The third cluster represents

14.47% of the popula on and consists of parameters passed by

reference. The return types of these vary, the most predominant being

CDUMPCONTEXT, which is a class that its objects provide several

diagnos c messages and _CONNECTIONPTR, which is a class that its

objects are pointers to a Connec on Interface

Member Data Analysis. Clustering member data en es formed three

clusters. The first cluster represents 38.34% of the popula on and

consists of private member dataone third of which are pointers. Most of

them belong to class FGControls, which defines a standard interface to

all flight simula on controls. The types of the member data vary. The

more predominant are Bool, Int, SGPPropertyNode and Float. The

second cluster represents 35.66% of the popula on and consists of

private data members, almost none of which are pointers. Most of them

belong to classes FGInterface, which defines shared flight mode

Member data classes in the 2nd cluster

 Admin interface for managing

online exam

It is question setting page, when admin

set a question, then he/she will be

redirected to question data base where

edit or modify option is available. this

page also has same nav bar or footer.

blog

writing page question editing page

when admin want to edit question then he can click edit button before the question

and question editing page will open where question and their options can be edited

with update button which redirect to question database table.

If admin click on delete button, then after deleting question it will be

redirected to question table. He can also upload a blog by upload button.

Models.py file
from django.db import models

class question(models.Model):
 qno=models.IntegerField(primary_key=True,auto_created=True)
 que=models.CharField(max_length=200,blank=True)

optiona=models.CharField(max_length=100,null=True,blank=True)

optionb=models.CharField(max_length=100,null=True,blank=True)

optionc=models.CharField(max_length=100,null=True,blank=True)

optiond=models.CharField(max_length=100,null=True,blank=True)

ans=models.CharField(max_length=1)

this is model which is created to manage account creation

class user(models.Model):
 user_name=models.CharField(max_length=25,primary_key=True)

email = models.EmailField(unique=True,null=False)

password=models.CharField(max_length=25,null=False)

gender=models.BooleanField(default=True)

this model is created for managing any particular message send by any

user or student.

class message(models.Model):
 name=models.CharField(max_length=20)
 email=models.EmailField(primary_key=True,unique=True,null=False)

message=models.TextField()

def __str__(self):

return self.name

View.py file of online exam

from django.shortcuts import render from django.http import

HttpResponse,HttpResponseRedirect from online_exam.models

import question,user,message import random

def set_question(request): return

render(request,'online_exam/set_question.html')

this views function save question to database when admin send new question

through question setting page

def save_question(request):

 demo=question()

demo.que=request.POST['question']

demo.optiona=request.POST['optiona']

demo.optionb=request.POST['optionb']

demo.optionc=request.POST['optionc']

demo.optiond=request.POST['optiond']

demo.ans=request.POST['answer'] demo.save()

 return HttpResponseRedirect('http://localhost:8000/online_exam/view_question/')

this manage when admin wants to see question database

def view_question(request): try: if

request.session['sessionuser'] == 'admin':

 qlist=question.objects.all()

 return render(request,'online_exam/view_question.html',{'questions':qlist})

else:

 return HttpResponseRedirect('/online_exam/sign_in/')

except:

 return HttpResponseRedirect('/online_exam/sign_in/')

this views.py function run when admin edit

question and click update button to save edit

change
def edit_save(request):

 n=int(request.POST['qnumber'])

 Q=question.objects.get(qno=n)

 Q.qno=n

 Q.que=request.POST['question']

 Q.optiona=request.POST['optiona']

 Q.optionb=request.POST['optionb']

 Q.optionc=request.POST['optionc']

 Q.optiond=request.POST['optiond']

 Q.ans=request.POST['answer']

Q.save()

 return HttpResponseRedirect('http://localhost:8000/online_exam/view_question/')

this views.py function run when admin click edit

button before question
def edit_question(request): try: if

request.session['sessionuser'] == 'admin':

 n=int(request.GET['qno'])

Q=question.objects.get(qno=n)

 return render(request,'online_exam/edit_question.html',{'question':Q})

else:

 return HttpResponseRedirect('/blog/main_blog/')

except:

 return HttpResponseRedirect('/online_exam/sign_up/')

this views.py function run when admin click delete

button before question
def delete_question(request):

try:

 n=int(request.GET['qno']) ques=question.objects.get(qno=n) ques.delete()

return HttpResponseRedirect('http://localhost:8000/online_exam/view_question/') except:

return HttpResponseRedirect('http://localhost:8000/online_exam/sign_in/?error=2')

this views.py function is for providing interface

after sign in
def home(request): try: if

request.session['sessionuser']:

 return render(request,'online_exam/home.html')

else:

 return HttpResponseRedirect('/online_exam/sign_in/')

except KeyError:

 return HttpResponseRedirect('/online_exam/sign_in/')

except:

 return HttpResponseRedirect('/online_exam/sign_in/?error=2')

def create_admin(): demo=user()

demo.user_name='admin'

demo.password='admin123'

demo.email='admin123@gmail.com'

demo.gender='1' demo.save()

this views.py function run when admin logout
def log_out(request):
 request.session.clear()

 return HttpResponseRedirect('/online_exam/sign_in/')

this views.py function run when any user send

message through footer section

def s_message(request):

try:

 demo=message() demo.name=request.POST['name']

demo.email=request.POST['email']

demo.message=request.POST['message'] demo.save() return

HttpResponse('<h2> message successfully submitted </h2>') except:

 return HttpResponse('<h2>some error occured .. try after some time</h2>')

 when any user send message through contact form as shown in picture

then the above views.py function will run .

template of online exam module
this is the template page for admin and student which dynamically show content

based on user.
{% extends "online_exam/base.html" %}
 {% block title %}home{% endblock %}

 {% block content %}
 {% if request.session.sessionuser == 'admin' %}

 <!-- navigator of admin-->
 <ul class="nav justify-content-end">
 <li class="nav-item">
 <a class="nav-link active" aria-current="page" href=
"http://localhost:8000/online_exam/set_question/">set new question

 <li class="nav-item">
 <a class="nav-link link-warning" href=
"http://localhost:8000/online_exam/view_question/">view question

 <li class="nav-item">
 create_blog

 <li class="nav-item">
 log_out

 <!-- Admin Dashboard -->
<div class="container mt-4">
 <!-- Admin Options Section -->
 <div class="admin-options">
 <h2>Welcome to <span id="welcome" style="color: blueviolet;"
></h2>
 <p>Welcome, {{request.session.sessionuser |capfirst}}!</p>

 <!-- Create Blog Option -->

<div class="card">
 <div class="card-body">
 <h5 class="card-title">Create Blog</h5>
 <p class="card-text">Compose and publish new blog posts

for the community.</p>

Create Blog
 </div>
 </div>
 <!-- Question Management Options -->
 <div class="card mt-3">
 <div class="card-body">

 <h5 class="card-title">Question Management</h5>
 <p class="card-text">Manage questions for online tests.
</p>
 <a href="/online_exam/set_question/" class="btn btn-
success">Create Question
 <a href="/online_exam/view_question/" class="btn btn-
danger">View Question
 Manage
discussion forum
 </div>
 </div>

 <!-- Other Admin Options -->
 <!-- Add more admin-specific options here -->

 </div>
</div>

 {% else %}

 <!-- navigator of user-->
 <ul class="nav justify-content-end">
 <li class="nav-item">
 <a class="nav-link active" aria-current="page" href=
"/online_exam/start_test/">start_test

 <li class="nav-item">
 log-out

 <li class="nav-item">
 create_blog

 <!-- user dashboard -->
<div class="container mt-4">
 <!-- students Options Section -->
 <div class="admin-options">
 <h2>Welcome to <span id="welcome" style="color: blueviolet;"
></h2>
 <p>Welcome, {{request.session.sessionuser |capfirst}}!</p>

 <!-- Create Blog Option -->

<div class="card">
 <div class="card-body">
 <h5 class="card-title">Create Blog</h5>

 <p class="card-text">Compose and publish new blog posts

for the community.</p>

Create Blog
 </div>
 </div>

 <!-- Question Management Options -->
 <div class="card mt-3">
 <div class="card-body">
 <h5 class="card-title">Resource Management</h5>
 <p class="card-text">Manage Resources.</p>

<a href="/online_exam/start_test/" class="btn btn-
success">Start Test
 post question on forum

 Explore
Notes
 </div>
 </div>

 <!-- Other Admin Options -->
 <!-- Add more admin-specific options here -->
 {% endif %}

 </div>

 </div>
 <!--cdn for auto text typing-->
 <script src="https://unpkg.com/typed.js@2.1.0/dist/typed.umd.js"
></script>

<script>
 var typed = new Typed('#welcome', {

strings: ['RESOURCE MANAGEMENT',],
 typeSpeed: 50,

backspeed:80,

loop:true });
 </script>

 {% endblock %}

This template page is passed to views.py (def

set_question(request) function) and this template

page has form which send question data to

save_question(request): function of views.py which

ultimately save data in database.

“Set_question.html”
{% extends "online_exam/base.html" %}
{% block title %} set_question{% endblock %}
{% block content %}
{% load static %}
<link rel="stylesheet" href="{% static 'css/question.css' %}">
{% if request.session.sessionuser == 'admin' %}

 <!-- navigator of admin-->
 <ul class="nav justify-content-end list-group list-grouphorizontal-

sm">
 <li class="nav-item">
 <a class="nav-link active" aria-current="page" href=
"http://localhost:8000/online_exam/set_question/">set new question

 <li class="nav-item">
 <a class="nav-link link-warning" href=
"http://localhost:8000/online_exam/view_question/">view question

 <li class="nav-item">
 create_blog

 <li class="nav-item">
 <a class="nav-link" href=
"http://localhost:8000/online_exam/log_out/">log_out

 {% else %}

 <!-- navigator of admin-->
 <ul class="nav justify-content-end list-group list-grouphorizontal-

sm">
 <li class="nav-item">
 <a class="nav-link active" aria-current="page" href=
"http://localhost:8000/online_exam/start_test/">start_test

 <li class="nav-item">
 <a class="nav-link" href=

"http://localhost:8000/online_exam/log_out/">log-out

 <li class="nav-item">
 create_blog

 {% endif %}

 <!--edit question-->
<div class="container-fluid">
 <div class="row">
 <div class="col-12 col-sm-12">

 <form action="http://localhost:8000/online_exam/save_question/"
method="post">
 {% csrf_token %} <div class="title">

question statement</div>
 <div class="data">
 <textarea name="question" id="" cols="50" rows="5"

placeholder="enter question"></textarea> </div>
 <div class="title">optiona</div>
 <div class="data">
 <input type="text" name="optiona">
 </div>
 <div class="title">optionb</div>
 <div class="data">
 <input type="text" name="optionb">
 </div>
 <div class="title">optionc</div>
 <div class="data">
 <input type="text" name="optionc">
 </div>
 <div class="title">optiond</div>
 <div class="data">
 <input type="text" name="optiond">
 </div>
 <div class="title">answer</div>
 <div class="data">
 <select name="answer" id="">
 <option value="a">a</option>
 <option value="b">b</option>
 <option value="c">c</option>
 <option value="d">d</option>

 </select>
 </div>
 <input type="submit" value="save" class="btn btn-primary mt-2">

 </form>
 </div>
 </div>
</div>

{% endblock %}
This template page is passed when admin request to view question database

{% extends "online_exam/base.html" %}
{% block title %}question_database{% endblock %}
{% block content %}

{% if request.session.sessionuser == 'admin' %}

 navigator of admin nav bar code is removed for space management
-->
 {% else %}

 <!-- navigator of student same as which shown in home page -->

 {% endif %}

 <!--fetching question from question_database-->
 <div class="table-responsive">

 <table class="table table-striped table-hover">
 <tr>
 <th>question</th>
 <th>optiona</th>
 <th>optionb</th>
 <th>optionc</th>
 <th>optiond</th>
 <th>answer</th>
 <th>edit</th>
 <th>delete</th>
 </tr>
 {% for q in questions %}
 <tr>
 <td class="que">{{forloop.counter}} .{{q.que}}</td>

 <td>{{q.optiona}}</td>
 <td>{{q.optionb}}</td>
 <td>{{q.optionc}}</td>
 <td>{{q.optiond}}</td>
 <td>{{q.ans}}</td>
 <td><a href=
"http://localhost:8000/online_exam/edit_question/?qno={{q.qno}}">edit</td>
 <td><a href=
"http://localhost:8000/online_exam/delete_question/?qno={{q.qno}}">delete</td>

 </tr>

 {% endfor %}

 </table>
 </div>
{% endblock %}

Template page which is used to render create_blog functionality called by def

create_blog(request): function of blog views.py file. This template has form which

send blog data for storage to def save_post(request): function of same.
{% extends "online_exam/base.html" %}
{% block title %}create_blog{% endblock %}
{% block content %}
{% if request.session.sessionuser == 'admin' %}

<!-- navigator of admin-->
<ul class="nav justify-content-end">
 <li class="nav-item">
 <a class="nav-link active" aria-current="page" href=
"http://localhost:8000/online_exam/set_question/">set new question

 <li class="nav-item">
 <a class="nav-link link-warning" href=
"http://localhost:8000/online_exam/view_question/">view question

 <li class="nav-item">
 create_blog

 <li class="nav-item"> <a class="nav-link"

href="/online_exam/log_out/">log_out

{% else %}

<!-- navigator of admin-->
<ul class="nav justify-content-end">
 <li class="nav-item">
 <a class="nav-link active" aria-current="page" href=

"/online_exam/start_test/">start_test

 <li class="nav-item">
 log-out

 <li class="nav-item">
 create_blog

{% endif %}
<!--blog writing-->
 <div class="container">
 <form action="/blog/save_blog/" method="post" enctype=
"multipart/form-data">
 {% csrf_token %}
 <div class="title pl-4 ">Enter Title for blog</div>
 <div class="data pl-4">
 <textarea name="title" id="" cols="40" rows="3"></textarea>
 </div>
 <div class="title pl-4">write blog</div>
 <div class="title pl-4"><textarea name="content" id="" cols=
"40" rows="25"></textarea></div>
 <div class="title mt-4 pl-4">upload image</div>
 <div class="data pl-4">
 <input type="file" name="picture" >
 </div>
 <div class="title mt-3 pl-4">category</div>
 <div class="data pl-4">
 <select name="category" >
 {% for c in cat %}

 <option value="{{c.no}}">{{c.name}}</option>
 {% endfor %}
 </select>

 </div>
 <input type="submit" value="upload" class="btn btn-success mt-
3">
 </form>
</div>
{% endblock %}

This template page is use to render edit question functionality .when admin enter

edit button before question then this html page is used by def

edit_question(request): function of views.py file of online exam.after editig this

send data to edit_save(request): function to updte database.
 “Edit_question.html”
{% extends "online_exam/base.html" %}
{% block title %}edit_question{% endblock %}
{% block content %}
{% if request.session.sessionuser == 'admin' %}

 <!-- navigator of admin-->
 <ul class="nav justify-content-end list-group list-grouphorizontal-

sm">
 <li class="nav-item">
 <a class="nav-link active" aria-current="page" href=
"/online_exam/set_question/">set new question

 <li class="nav-item">
 <a class="nav-link link-warning" href=
"/online_exam/view_question/">view question

 <li class="nav-item">
 create_blog

 <li class="nav-item">
 log_out

 {% else %}

 <!-- navigator of admin-->

 <ul class="nav justify-content-end list-group list-grouphorizontal-

sm">
 <li class="nav-item">
 <a class="nav-link active" aria-current="page" href=
"/online_exam/start_test/">start_test

 <li class="nav-item">
 log-out

 <li class="nav-item">
 create_blog

 {% endif %}
<!--edit question section-->
<div class="container-fluid"> <form

action="/online_exam/edit_save/" method="post">
 {% csrf_token %}
 <input type="hidden" name="qnumber" value="{{question.qno}}">
 <div class="title"> question statement</div>
 <div class="data">
 <textarea name="question" id="" cols="50" rows="5" >{{

question.que}}</textarea>
 </div>
 <div class="title">optiona</div>
 <div class="data">
 <input type="text" name="optiona" value=
"{{question.optiona}}">
 </div>
 <div class="title">optionb</div>
 <div class="data">
 <input type="text" name="optionb" value=
"{{question.optionb}}" >
 </div>
 <div class="title">optionc</div>
 <div class="data">
 <input type="text" name="optionc" value=
"{{question.optionc}}">
 </div>
 <div class="title">optiond</div>
 <div class="data">
 <input type="text" name="optiond" value=
"{{question.optiond}}">
 </div>
 <div class="title">answer</div>

 <div class="data">
 <select name="answer" id="">
 <option value="a" {% if question.ans == 'a' %}selected{%

endif %}>a</option>
 <option value="b" {% if question.ans == 'b' %}selected{%

endif %}>b</option>
 <option value="c" {% if question.ans == 'c' %}selected{%

endif %}>c</option>
 <option value="d" {% if question.ans == 'd'
%}selected{% endif %}>d</option>
 </select>
 </div>
 <div>
 <input type="submit" value="update" class="btn btn-
secondary mt-3">
 </div>

 </form>
</div>
{% endblock %}

 5.2 exam taking

student can give exams with multiple-choice question by login through sign in page.

He can enjoy various features such as add blog, post question, start test.

 When user login as student then resource management

provide a different view and features while when an admin enters by login then it

shows different view.

Views.py file for online_exam

when user sign in as student then above view is render dynamically by using this

home function and home.html template file which is used for admin interface.

def home(request):

try:
 if request.session['sessionuser']: return

render(request,'online_exam/home.html') else: return

HttpResponseRedirect('/online_exam/sign_in/') except KeyError:

return HttpResponseRedirect('/online_exam/sign_in/') except:

return HttpResponseRedirect('/online_exam/sign_in/?error=2') this

function execute when an student click on start test button

def start_test(request): try: if request.session['sessionuser']:

qlist=list(question.objects.all()) random.shuffle(qlist)

qpool=qlist[:5] return

render(request,'online_exam/start_test.html',{'qpool':qpool}) else:

return HttpResponseRedirect('/online_exam/sign_in/') except:

return HttpResponseRedirect('/online_exam/sign_in/')

 (start_test.html)template file is used by

def start_test(request): function for

rendering
{% extends "online_exam/base.html" %}
{% block title %}test{% endblock %}
{% block content %}
{% if request.session.sessionuser == 'admin' %}

 <!-- navigator of admin-->
 <ul class="nav justify-content-end">
 <li class="nav-item">
 <a class="nav-link active" aria-current="page" href=
"http://localhost:8000/online_exam/set_question/">set new question

 <li class="nav-item">
 <a class="nav-link link-warning" href=
"http://localhost:8000/online_exam/view_question/">view question

 <li class="nav-item">
 create_blog

 <li class="nav-item">
 <a class="nav-link" href=
"http://localhost:8000/online_exam/log_out/">log_out

 {% else %}

 <!-- navigator of admin-->
 <ul class="nav justify-content-end">
 <li class="nav-item">
 <a class="nav-link active" aria-current="page" href=
"http://localhost:8000/online_exam/start_test/">start_test

 <li class="nav-item">
 <a class="nav-link" href=

"http://localhost:8000/online_exam/log_out/">log-out

 <li class="nav-item">
 create_blog

 {% endif %}

<div class="container-fluid">
 <div class="row pl-4">
 <div class="col-10">

 <form action="http://localhost:8000/online_exam/test_result/"
method="post">
 {% csrf_token %}
 {% for q in qpool %}
 <input type="hidden" name="qno{{q.qno}}" value="{{q.qno}}">
 <div class="question">{{forloop.counter}} .{{q.que}}</div>

<div class="option"><input type="radio" name="ans{{q.qno}}" value="a"

>{{q.optiona}}</div>
 <div class="option"><input type="radio" name="ans{{q.qno}}"

value="b" >{{q.optionb}}</div>
 <div class="option"><input type="radio" name="ans{{q.qno}}"

value="c" >{{q.optionc}}</div>
 <div class="option"><input type="radio" name="ans{{q.qno}}"

value="d" >{{q.optiond}}</div>
 {% endfor %}
 <input type="submit" value="submit"class=" btn btn-primary mt-
3" >
 </div>

 </div>
 </form>
</div>
{% endblock %}

the interface when a student clicks on start_test then randomly

a chunk of 5 question comes from database in multiple choice

questions. When one refresh page then questions will be

changed.

5.3 Result Analysis:

 When a student submits the test then his test data is sent to test result function for

result analysis, where it shows where we make a mistake and right wrong questions.

Views.py file of online_exam

def test_result(request): try: if

request.session['sessionuser']:

total_wrong=0 total_write=0

attempted_ques=0 wq=[]

qlist=[] for k in request.POST:

if k.startswith('qno'):

qlist.append(int(request.POST[k]))

for n in qlist: try:

q=question.objects.get(qno=n)

if q.ans == request.POST['ans'+str(n)]:

total_write+=1 else:

total_wrong+=1

wq.append(q)

attempted_ques+=1

except: pass

d={
 'total_wrong':total_wrong ,
 'total_wright':total_write ,
 'attempted_ques':attempted_ques,
 'wq':wq

}
 return render(request,'online_exam/test_result.html',d)

except:
 return HttpResponseRedirect(
'http://localhost:8000/online_exam/sign_in/')

template file which is used for result analysis

{% extends "online_exam/base.html" %}
{% block title %}test_result{% endblock %}
{% block content %}
{% if request.session.sessionuser == 'admin' %}

 <!-- navigator of admin-->
 <ul class="nav justify-content-end">
 <li class="nav-item">
 <a class="nav-link active" aria-current="page" href=
"http://localhost:8000/online_exam/set_question/">set new question

 <li class="nav-item">
 <a class="nav-link link-warning" href=
"http://localhost:8000/online_exam/view_question/">view question

 <li class="nav-item">
 create_blog

 <li class="nav-item">
 <a class="nav-link" href=
"http://localhost:8000/online_exam/log_out/">log_out

 {% else %}

 <!-- navigator of admin-->
 <ul class="nav justify-content-end">
 <li class="nav-item">
 <a class="nav-link active" aria-current="page" href=
"http://localhost:8000/online_exam/start_test/">start_test

 <li class="nav-item">
 <a class="nav-link" href=

"http://localhost:8000/online_exam/log_out/">log-out

 <li class="nav-item">
 create_blog

 {% endif %}

 <table class="table table-dark table-striped pl-3 mt-3">
 <tr>
 <th>total question:</th>
 <th>5</th>
 </tr>
 <tr>
 <th>attempted question</th>
 <th>{{attempted_ques}}</th>
 </tr>
 <tr>
 <th>wright question</th>

<th>{{total_wright}}</th>
 </tr>
 <tr>
 <th>wrong question</th>

<th>{{total_wrong}}</th>
 </tr>
 </table>
 <table class="table table-striped table-hover pl-3">

 <tr>
 <th class="text-center" style="color: red;"> Questions in

which you make mistake <h1>😢</h1></th>
 </tr>

 {% for q in wq %}
 <tr>
 <td>

 <div>{{forloop.counter}} .{{q.que}}</div>
 <div>{{q.optiona}} <input type="radio" {% if q.ans == 'a' %} checked

{% endif %}></div>
 <div>{{q.optionb}} <input type="radio" {% if q.ans == 'b' %} checked

{% endif %}></div>
 <div>{{q.optionc}} <input type="radio" {% if q.ans == 'c' %} checked

{% endif %}></div>
 <div>{{q.optiond}} <input type="radio" {% if q.ans == 'd' %} checked

{% endif %}></div>
 </td>
 </tr>
 {% endfor %}
 <tr>
 <td class="text-center"> test again
 </td>
 </tr>
 </table>
{% endblock %}

 Blog system
The Blog System is a key feature of the Resource Management Project, providing users with

a collaborative platform for sharing insights, knowledge, and fostering community

engagement. Developed within the Django framework, this module enhances the

educational experience by facilitating communication, information exchange, and

collaborative learning.

Thank You

	ON
	Background
	Pre-Processing Methodology
	Pre-processing methodology
	Aspects of the Proposed Framework
	.Result Evalua on
	The First Case Study

	this views.py function run when admin edit question and click update button to save edit change
	this views.py function run when admin click edit button before question
	this views.py function run when admin click delete button before question
	this views.py function is for providing interface after sign in
	this views.py function run when admin logout
	this views.py function run when any user send message through footer section
	template of online exam module
	5.2 exam taking
	(start_test.html)template file is used by def start_test(request): function for rendering
	Blog system

