192440

20063

63

Printed Pages: 8

P.G. (Semester-II) Examination, 2020 PHYSICS

[Sixth Paper : MPHYCC-6]

Time: Three Hours [Maximum Marks: 70

Note: Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks. Question No.1 and 2 are compulsory. Answer from all the groups as directed.

GROUP-A

- Select the correct answer of the following. [2x10=20]
 - (a) For an isotopic, dielectric medium, permeability is:
 - (i) zero

unity

- (iii) infinity
- (iv) none of the above

20063/350

(1)

[P.T.O.]

(b)	The vector	r potential is related to mag	netic field
	as:		

(i)
$$\vec{\nabla} \times \vec{B} = \vec{A}$$

$$\overrightarrow{\nabla} \times \overrightarrow{A} = \overrightarrow{B}$$

(iii)
$$\vec{B} = \vec{\nabla} \phi - \vec{A}$$

(iv)
$$\vec{B} = \vec{\nabla} \cdot \vec{A}$$

(c) Normal component of magnetic induction is :

(i) discontinuous across the boundary

- (iv) none of the above
- (d) Maxwell's equation is covariant under:
 - (i) Orthogonal transformation
 - (ii) Galilian transformation

(iv) All of the above

20063/350 (2)

(e) Electromagnette field tensor I iii is :				i
		(1)	Symmetric tensor	
		(11)	Anti Symmetric tensor	
		(111)	Both (i) and (ii)	
		(iv)	None of the above	
	(f)	Magne	etosomic wave in plasma is h	ydromagnetic
		wave		
		(II)	perpendicular to \overrightarrow{B}	, and a state of
		(ii)	parallel to $ec{B}$	
		(iii)	both (i) and (ii)	
		(iv)	none of the above	
	(g)	Hydro called		in plasma is
and the		(1)	MHD wave	
		((ii)	Alfven wave	
20063	/350		(3)	[P.T.O.]

Electromagnetic field tensor T_{ap} is :

- (iv) Acoustic wave
- (h) L W potentials are dependent on the velocity of e- but independent on the :
 - (i) Charge

- (iii) Acceleration
- (iv) All of the above
- (i) Lorentz force is defined as:

(i)
$$\overrightarrow{F} = q \overrightarrow{E}$$

(ii)
$$\overrightarrow{F} = q\overrightarrow{V} \times \overrightarrow{B}$$

$$\overrightarrow{F} = q(\overrightarrow{E} + \overrightarrow{V} \times \overrightarrow{B})$$

(iv) None of the above

20063/350

(4)

(i) $\sqrt{\sigma}$

- (iii) σ
- (iv) σ^2

GROUP-B

- 2. Write short notes on any four of the following: [5x4=20]
 - (a) Plasma parameter
 - (b) Retarded potential

Boundary condition

- (d) E M wave in free space
- (e) Four vector potential

20063/350

(5)

GROUP-C

Note: Answer any three of the following questions: [10x3=30]

- Set up electromagnetic wave equation in conducting media and free space.
- 4. Give the significance of Debye shielding. Deduce the expression for Debye potential and shielding.
 - Define Lienard Wiechert potential. Obtain expression for these potentials.
 - Write down Maxwell's four equation in covariant form and discuss the E - M field tensor.
 - 7. Prove that D'Alembert's operator is invariant under Lorentz transformation.

---- x ----

20063/350

(6).

P.G. (Semester-II) Examination, 2020 PHYSICS

64

| Seventh Paper : MPHYCC-7 |

time: Three Hours!

|Maximum Marks: 70

Note: Candidates are required to give their answers in their cwn words as far as practicable. The figures in the margin indicate full marks. Question No 1 and 2 are compulsory. Answer from all the groups as directed.

GROUP-A

- Choose the correct answer of the following questions.
 [2x10=20]
 - (a) A BJT is a:

current controlled device

- (ii) voltage controlled device
- (iii) resistance controlled device
- (iv) none of these

[P.T.O.]

20064/350

(1)

· (b)	In a CE amplifier, the phase of the output voltage
,	has:
	(i) Same phase as that of the input voltage
	180º phase change than the input voltag
	(iii) 90° phase change than the input voltage
	(iv) none of these
(c)	In an integrator circuit, the feed back element of
(0)	the Op-Amp is a :
	(i) resistance (ii) capacitance
	(iii) inductance (iv) diode
(d)	If the non inverting input terminal of an Op-Amp is grounded, then the Potential of the inverting
	input terminal will be :
•	zero
	(ii) infinite
	(iii) equal to the applied signal voltage
The state of the s	(iv) none of these
20064/350	(2)

(e) In VJT, the number of P - N junction is :			unction is :			
	(i)	One	(ii)	Two		
	(iii)	Three	(iv)	None of these		
(f)	back	ondition for suspecillator is : $A\beta > 1$	tained	oscillation of a feed		
	(ii)	$(1 - A\beta) = 0$				
	(iii)	$(1 + A\beta) = 0$				
	(iv)	Αβ < 1				
(g)	The excess - 3 code for Decimal number 7 is:					
	(i)	1011	(ii)	1100		
	AUT .	1010	(iv)	None of these		
(h)	If the its all	output of a logic inputs are 0 (ze	c gate is ero), the	n the gate is :		
	(i)	AND gate	(ii)	OR gate		
	مرنن	NOR gate	(iv)	NAND gate		
²⁰ 064/350		(3)		[P.T.O.]		

(i)	To set (Q = 1) a R-S flip flop, the preset (Pr) an
	clear (cr) terminals should be:

(i)
$$Pr = 0, Cr = 0$$

(iii)
$$Pr = 1, Cr = 0$$

(iv)
$$Pr = 1, Cr = 1$$

(j) Which of the following Microprocessor is the oldest version?

GROUP-B

- 2. Discuss in short, any four of the following: [5x4=20]
 - (a) Zener diode
 - (b) Barkhausen Criterion
 - (e) OR gate
 - (d) K map
 - (e) Address Bus

20064/350

(4)

65

Printed Pages: 8

P.G. (Semester-II) Examination, 2020 PHYSICS

[Eighth Paper: MPHYCC-8]

Time: Three Hours

|Maximum Marks: 70

Note: Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks. Question No.1 and 2 are compulsory. Answer any five questions.

GROUP-A

1. Choose the correct answer of the following questions.

[2x10=20]

- (a) Identical particle having antisymmetrical in nature called:
 - (i) Electron

(ii) Proton

20065/350

(1)

[P.T.O.]

- (d) The particle obeys Bose-Einstein statistics are in nature.
 - (i) Symmetrical

- (ii) Antisymmetrical
- . (iii) Both (i) and (ii)
 - (iv) None of the above
- (e) The most probable distribution in case of F.D. statistics is represented by:

(i)
$$n_i = \frac{g_i}{e^{\alpha + \beta Ei} - 1}$$

(ii)
$$n_i = \frac{g_i}{e^{\alpha + \beta E_i} + 1}$$

- (iii) Both (i) and (ii)
- (iv) None of the above
- (f) The quantum analogy of the classical density function is known as:
 - (i) Simple operator

20065/350

(3)

[P.T.O.]

	(ii)	Density operator
	(iii)	Heigenberg operator
	(iv)	None of the above
(g)		ite dwarf star is a mass of at an extremly emperature.
	(i)	Lithium
	(ii)	Barium
	(iii)	Helium
	(iv)	None of these
(h)	The of:	Grand canonical ensemble is a collection
	(i)	T, V, S
	(ii)	T, V, M
	(iii)	T, V, N
	(iv)	None of these
20065/350		(4)

(i)	(i) In Micro canonical ensemble the walls are:		
	(i)	permeable	
	(ii)	impermeable	
	(iii)	rigid	
	(iv)	none of these	
(j) The wave function belonging value is called:		ave function belonging to different eigen is called:	
	(i)	Normal	
	(ii)	Orthogonal	
	(iii)	Both (i) and (ii)	
	(iv)	None of the above	
		GROUP-B	
2. Answ	er any f	our of the following questions : [4x5=20]	
40)	Eleme	entary exitation of helium - H	
(b)	Expla	in quantum treatment of canonical	
20065/350		(5)	

(c) White dwarfs Brownian motion (d) Density matrix (e) GROUP-C Note: Answer any three of the following questions: [3×10=30] Obtain mean energy of a harmonic oscillator on the basis 3. of quantum statistics. Give an account of thermodynamical behaviour of ideal Base gas. Define Density matrix. Discuss the problem of free 5. particle in a box on the basis of density matrix. Discuss and explain Langevin theory of Brownian motion. Write short notes on the following: 7. Micro canonical ensembles (a) Fluctuation dissipation theorem (b)

- X ---

(6)

20065/350