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Relativity
2.1 Velocity Addition Law

If frame B is moving with respect to frame A with velocity v1, and frame C is moving with

respect to frame A with velocity v2 in the opposite direction, then the relative velocity between

frames B and C is given by

 =
 + 

1 +



Einstein actually derived a more general relation in which frames Band C could move at arbitrary

angles with respect to frame A.

An interesting consequence of this relation is that if both v1 and v2 are less than c in magnitude,

then so is v3. Thus, one cannot exceed the speed c no matter how one 'adds' up the velocities of

several frames. The speed c is the 'speed limit' of nature which no object can ever exceed.

Furthermore, if one of the velocities is the speed of light c, then the sum is also c. Thus, the

speed of light viewed from any frame is c, which is indeed one of the postulates on which the

above equation is based. Finally, note that if v1 and v2 are both much smaller than c, then we

recover the 'intuitive' law of addition of velocities, v3 = v1 + v2.

PROOF:

Suppose, relative to a frame S, a particle has a velocity u = uxi + uyj + uzk

where ux = dx/dt etc. What we require is the velocity of this particle as measured in the frame of

reference S´ moving with a velocity vx relative to S. If the particle has coordinate x at time t in S ,

then the particle will have coordinate x´ at time t´ in S´ where

x = γ(x´+vt´) and t = γ (t´+vxx´/c
2)

If the particle is displaced to a new position x + dx at time t + dt in S, then in S´ it will be at the

position x´ + dx´ at time t´ + dt´ where

x + dx = γ (x´ + dx´ + vx(t´ + dt´)

t + dt = γ (t´ + dt´+ vx (x´+ dx´)/c
2)

And hence

dx = (dx´ + vx/dt´)

dt = γ(dt´ + vxdx´/c
2)
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So that, ux =



=



/
=

/

/(



)
=



/

where u´x = dx´/dt´ is the X velocity of the particle in the S´ frame of reference.

2.2 Doppler Shift

If light waves moving in some direction have a frequency ν in a frame A, then they have a

frequency,

′ =  
1− /

1 + /

in a frame which is moving in the same direction with velocity v, and a frequency

′ =  
1 + /

1− /

in a frame which is moving in the opposite direction with velocity v. Note again that if v/c«1, one

recovers the more familiar result for Doppler shift v/'v = 1 ± v/c (depending on the relative direction

of the light waves and the frame of the observer). Using arguments from the classical theory of

electromagnetism, Einstein also showed that the energy of the light waves transforms in the same

way as the frequency. This is now obvious from the quantum theory of photons; the energy of a

photon is proportional to the frequency of the corresponding light wave, the constant of

proportionality being given by Planck's constant h.

2.3 Mass Energy Relation

Let an object which is at rest in a frame A simultaneously emit two light waves with the same

energy E/2 in opposite directions. Since the two waves carry equal but opposite momenta, the

object remains at rest, but its energy decreases by E.

By the Doppler shift argument given above, in a frame B which is moving at velocity v in one of

those directions, the object will appear to lose energy equal to



2

1− /

1 + /
+


2

1 + /

1 − /
=



1−



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The difference in energy loss as viewed from the two frames must therefore appear as a

difference in kinetic energy seen by frame B. Hence, if v/c is very small, in frame B the object

loses an amount of kinetic energy given by



1 −




−  =
1

2
×



× 

Since the kinetic energy of an object with mass M moving with speed v is given by (1/2) Mv2

(for v/c « 1), this means that the object has lost an amount of mass given by E/c2. In other words,

a loss in energy of E is equivalent to a loss in mass of E/c2. This implies an equivalence between

the mass and energy content of any object. So, the mass energy relation is E = mc2.


